Les Pléiades sont un amas ouvert, situé dans la constellation du Taureau.

L’astrophysique (du grec astêr : étoile, astre et physis : science de la nature, physique) est une branche interdisciplinaire de l'astronomie qui concerne principalement la physique et l'étude des propriétés des objets de l'univers (étoiles, planètes, galaxies, milieu interstellaire par exemple), comme leur luminosité, leur densité, leur température et leur composition chimique.

Au XXIe siècle, les astronomes ont une formation en astrophysique et leurs observations sont généralement étudiées dans un contexte astrophysique, de sorte qu'il y a moins de distinction entre ces deux disciplines qu'auparavant.

Disciplines de l'astrophysique

Il existe différentes disciplines en astrophysique :

L’astrophysique étant un sujet très vaste, les astrophysiciens utilisent généralement plusieurs disciplines de la physique, dont la mécanique, l’électromagnétisme, la mécanique statistique, la thermodynamique, la mécanique quantique, la relativité, la physique nucléaire, la physique des particules, la physique atomique et moléculaire.

Historique

Copernic (1473-1543).

Aussi loin que remontent les données historiques, on trouve des preuves de l’existence de l’astronomie. Pendant longtemps, l’astronomie était une discipline bien distincte de la physique. Dans la pensée aristotélicienne, le monde céleste tendait à la perfection, avec les corps célestes qui semblaient être des sphères parfaites circulant sur des orbites parfaitement circulaires, alors que le monde terrestre semble condamné à l’imperfection. Ces deux mondes ne pouvaient donc pas être liés.

Aristarque de Samos (310 av. J.-C. – 230 av. J.-C.) fut le premier à mettre en avant l’idée selon laquelle le mouvement des corps célestes pouvait s’expliquer par la rotation des planètes du système solaire (dont la Terre) autour du Soleil. À l’époque, la vision géocentrique de l’univers prévalait et la théorie héliocentrique d’Aristarque fut déclarée farfelue et hérétique. Cette vision resta en place jusqu’à ce qu’un astronome nommé Nicolas Copernic ressuscite le modèle héliocentrique au XVIe siècle. En 1609, grâce à la lunette astronomique qu'il avait adaptée, Galilée découvrit les quatre lunes les plus brillantes de Jupiter, et démontra qu’elles tournaient toutes autour de cette planète. Cette découverte était en complète contradiction avec le dogme de l’Église catholique de l’époque. Il n’échappa à une peine sévère qu’en prétendant que son œuvre n’était que pur travail mathématique et donc purement abstrait, contrairement à la philosophie naturelle (la physique).

Newton (1642-1727).

À partir des données précises d’observations (principalement en provenance de l’observatoire de Tycho Brahe), des recherches ont été menées pour trouver une explication théorique au comportement observé. Dans un premier temps, seules des lois empiriques ont été formulées, telles que les lois de Kepler sur le mouvement planétaire au début du XVIIe siècle. Quelques années plus tard, Isaac Newton réussit à faire le lien entre les lois de Kepler et la dynamique de Galilée. Il découvrit en effet que les mêmes lois régissaient la dynamique des objets sur Terre et le mouvement des astres dans le système solaire. La mécanique céleste, application de la gravité newtonienne et des lois de Newton pour expliquer les lois de Kepler sur les mouvements des planètes, fut la première unification de l’astronomie et de la physique.

Après qu’Isaac Newton eut publié son livre, Philosophiae Naturalis Principia Mathematica, la navigation maritime changea radicalement. À partir de 1670, le monde entier était mesuré à partir d’instruments modernes donnant la latitude et d’horloges. Les besoins de la Marine poussaient à l’amélioration progressive des instruments et des observations astronomiques, donnant ainsi davantage de données aux scientifiques.

En 1814, Joseph von Fraunhofer découvrit que la lumière du Soleil pouvait se décomposer en un spectre de lignes colorées, appelé depuis raies de Fraunhofer. Des expériences avec des gaz chauffés montrèrent par la suite que les mêmes lignes étaient présentes dans leur spectre. Ces lignes spécifiques correspondaient à un élément chimique unique. Ceci fut la preuve que les éléments chimiques présents dans le Soleil pouvaient être trouvés sur Terre. En effet, l’hélium fut d’abord découvert dans le spectre du Soleil, d’où son nom, et seulement ensuite sur la Terre. Au XXe siècle, la spectroscopie (l’étude de ces lignes spectrales) se développa, notamment grâce aux avancées de la physique quantique qui pouvait expliquer les observations expérimentales et astronomiques[1].

Astronomie observationnelle

NGC 4414, une galaxie spirale de la constellation Coma Berenices, de 56 000 années-lumière de diamètre et située à 60 millions d'années-lumière.

La majorité des observations en astrophysique sont effectuées en utilisant le spectre électromagnétique :

Mis à part les radiations électromagnétiques, seulement très peu de choses situées à grande distance peuvent être observées depuis la Terre. Quelques observatoires d’ondes gravitationnelles ont été construits mais ces ondes sont très difficiles à détecter. On trouve également quelques observatoires de neutrinos pour l’étude du Soleil (astronomie neutrino), principalement. Les rayons cosmiques sont des particules de haute énergie qui sont observées lorsqu'elles heurtent l’atmosphère terrestre.

Les observations diffèrent également sur l'échelle de temps qu’elles considèrent. La plupart des observations optiques s'étalent sur plusieurs minutes, voire sur plusieurs heures, de sorte que les phénomènes qui évoluent plus rapidement que cet intervalle de temps ne sont pas visibles. Cependant, les données historiques de quelques objets s’étendent sur des siècles ou des millénaires. D'autre part, les observations radio se focalisent sur des événements à l’échelle de la milliseconde (pulsar milliseconde) ou combine les données de plusieurs années (études de la décélération des pulsars). Les informations obtenues à ces différentes échelles permettent d'accéder à des résultats différents.

L’étude de notre propre Soleil tient une place particulière dans l’astrophysique observationnelle. Du fait de l'énorme distance à laquelle se trouvent les autres étoiles, les détails que l’on peut acquérir sur le Soleil sont sans commune mesure avec ce que l’on pourrait observer sur les autres étoiles. La compréhension du Soleil sert ainsi de guide à notre connaissance des autres étoiles.

L’évolution stellaire, le sujet qui étudie comment changent les étoiles, est souvent modélisée en plaçant les différents types d’étoiles à leur position sur le diagramme de Hertzsprung-Russell. Ce diagramme représente l’état d’un objet stellaire, de sa naissance à sa disparition. La composition matérielle des objets astronomiques peut souvent être étudiée en utilisant :